Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/apocynin-acetovanillone.html There is no standard instrument for carrying out medical percussion even though the procedure has been in continuous use since 1761. This study developed one such instrument. It generates medical percussion sounds in a reproducible manner and accurately classifies them into one of three classes. Percussion signals were generated using a push-pull solenoid plessor applying mechanical impulses through a polyvinyl chloride plessimeter. Signals were acquired using a National Instruments USB 6251 data acquisition card at a rate of 8.192 kHz through an air-coupled omnidirectional electret microphone located 60 mm from the impact site. Signal acquisition, processing, and classification were controlled by an NVIDIA Jetson TX2 computational device. A complex Morlet wavelet was selected as the base wavelet for the wavelet decomposition using the maximum wavelet energy method. It was also used to generate a scalogram suitable for manual or automatic classification. Automatic classification was achieved using a MobileNetv2 convolutional neural network with 17 inverted residual layers on the basis of 224 × 224 x 1 images generated by downsampling each scalogram. Testing was carried out using five human subjects with impulses applied at three thoracic sites each to elicit dull, resonant, and tympanic signals respectively. Classifier training utilized the Adam algorithm with a learning rate of 0.001, and first and second moments of 0.9 and 0.999 respectively for 100 epochs, with early stopping. Mean subject-specific validation and test accuracies of 95.9±1.6% and 93.8±2.3% respectively were obtained, along with cross-subject validation and test accuracies of 94.9% and 94.0% respectively. These results compare very favorably with previously-reported systems for automatic generation and classification of percussion sounds. Despite a long history of ECG-based monitoring of acute ischemia quantified by several widely us
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत