Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/bgb-283-bgb283.html A fertilizer drawn forward osmosis (FDFO) process was tested for the concentration of synthetic brine using an industrial-grade fertilizer ammonium sulfate (NH4)2SO4 as the draw solution (DS), NaCl-based synthetic brine as the feed solution (FS), and a commercial forward osmosis (FO) membrane. A bench-scale investigation and a pilot-scale investigation were carried out. By using the highest possible concentration of the DS with a fixed concentration of the FS, the brine generated by reverse osmosis (RO) desalination plants was simulated. The aim of this investigation, performed in batch mode, was to assess the feasibility of using the FDFO process with the tested DS to concentrate the brine by extracting water to dilute the DS. While the main aim of the investigated process was achieving the maximum possible volume reduction of the brine, the resulting DS was further diluted to reduce the nutrients' concentration in the diluted DS to the acceptable levels producing fertilized water that can be used for fertigation. The investigation showed that the proposed process using the tested fertilizer resulted in an average water flux of 8.01 l/h/m2, and a volume reduction of the brine of around 12%.Over the past few decades, the rapid development of agriculture and industries has resulted in contamination of the environment by diverse pollutants, including heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals. Their presence in the environment is of great concern due to their toxicity and non-biodegradable nature. Their interaction with each other and coexistence in the environment greatly influence and threaten the ecological environment and human health. Furthermore, the presence of these pollutants affects the soil quality and fertility. Physicochemical techniques are used to remediate such environments, but they are less effective and demand high costs of operation. Bioremediation is an effi
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत