Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pf-04957325.html BACKGROUND AND OBJECTIVE There has been an increase in the use of cannabis. Delta-9-tetrahydrocannabinol, (THC) is the major psychoactive compound, which has both therapeutic and narcotic effects. THC pharmacokinetics are important for designing optimal dosing regimens, and physiologically-based pharmacokinetic (PBPK) models are used to predict a compound's actions in target organs. Extrapolation of the model from animals to humans can be applied for predicting THC exposure in humans. Here, we aimed to develop a PBPK model of THC in mice, rats, and pigs. METHODS A PBPK model of THC in mice, rats, and pigs was developed based on seven compartments, i.e., lungs, brain, fat, kidneys, liver, and rapidly perfused and slowly perfused tissues. A flow-limited model was employed to explain THC distribution across tissues. Physiological parameters (i.e., organ blood flows and organ volumes, and biochemical as well as physicochemical parameters, were acquired from the literature. Qualification of the model was assessed based on agreement between simulated and observed THC concentrations. RESULTS The developed PBPK model consisted of the seven compartments with P-glycoprotein involvement in the brain satisfactorily explained the observed data acquired from three studies. Although some under- and over-predictions exist, the model adequately captured the behavior of the observed data from all three species, with the coefficient of determination (R2) ranging from 0.47 to 0.99. CONCLUSIONS A PBPK model of THC in mice, rats, and pigs was successfully developed and validated. This model can be further applied for inter-species extrapolation to humans.The original version of this article unfortunately contained a mistake.Although major advancements in the field of cardiology have allowed for an increasing number of patients to undergo minimally invasive imaging and interventional procedures, contrast-induced acute kidney injury (CI
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत