Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tak-875.html Because dysfunctions of endothelial cells are involved in many pathologies, in vitro endothelial cell models for pathophysiological and pharmaceutical studies have been a valuable research tool. Although numerous microfluidic-based endothelial models have been reported, they had the cells cultured on a flat surface without considering the possible three-dimensional (3D) structure of the native extracellular matrix (ECM). Endothelial cells rest on the basement membrane in vivo, which contains an aligned microfibrous topography. To better understand and model the cells, it is necessary to know if and how the fibrous topography can affect endothelial functions. With conventional fully integrated microfluidic apparatus, it is difficult to include additional topographies in a microchannel. Therefore, we developed a modular microfluidic system by 3D-printing and electrospinning, which enabled easy integration and switching of desired ECM topographies. Also, with standardized designs, the system allowed for high flow rates up to 4000 μL/min, which encompassed the full shear stress range for endothelial studies. We found that the aligned fibrous topography on the ECM altered arginine metabolism in endothelial cells and thus increased nitric oxide production. There has not been an endothelial model like this, and the new knowledge generated thereby lays a groundwork for future endothelial research and modeling.COVID-19, caused by the SARS-CoV-2 virus, has developed into a global health crisis, causing over 2 million deaths and changing people's daily life the world over. Current main-stream diagnostic methods in the laboratory include nucleic acid PCR tests and direct viral antigen tests for detecting active infections, and indirect human antibody tests specific to SARS-CoV-2 to detect prior exposure. In this Perspective, we briefly describe the PCR and antigen tests and then focus mainly on existing antibody tests and their
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत