Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Rapamycin.html maritimus habitat presented a significant trapping effect. Microplastics occurred in the sediment of all vegetated and unvegetated areas with similar abundances and high variability. Microplastics, all of type fibre, were recorded on all canopies except for S. maritimus. Overall, the trapping capacity of microplastics in the sediment and on the canopy was higher for subtidal than for intertidal vegetated habitats. We conclude that generalizations in the trapping effect of coastal vegetated areas should be done with caution, since it may be highly variable and may depend on the plastic size, habitat and tidal position. Since these habitats support a high biodiversity, they should be included in assessments of plastic debris accumulation and impacts in coastal areas. Further research, including experimental studies, is needed to shed more light on the role of coastal vegetated habitats as plastic sinks. Graphene oxide (GO) that has many advanced properties, has been applied in various fields, such as water treatments and removal of contaminations. Hypochlorite is widely used in water treatments. However, the effects of hypochlorite on the transformations and risks of GO, and the toxicological responses remain largely unknown, especially under visible-light irradiation. The present work found that visible-light irradiation promoted the breakdown of sp2 structures of GO by hypochlorite, producing alkanes and arenes with short carbon skeletons. Compared to oxygen-containing radicals, chlorine-related radicals contributed to the breakdown of carbon atomic rings of GO. Compared to pristine GO, the transformed GO inhibited algal reproduction, reduced photosynthesis, and promoted oxidative stress and membrane permeability. Substantial plasmolysis and increased numbers of starch grains were observed in the exposure groups. Metabolomics analysis found that oxidative stress and increased membrane permeability linked to downreg
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत