Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/danicamtiv-myk-491.html Bread wheat (Triticum aestivum L.), the varieties of which are widely used for the grain production, is difficultly crossable with related species of Triticeae Dum. This factor limits the chance of introduction of alien genetic material into the wheat gene pool and the possibility of new varieties breeding with good adaptation to adverse environmental factors. The crossability between wheat and related species is controlled by Kr1-Kr4 genes (Crossability with Rye, Hordeum and Aegilops spp.) and the SKr gene (Suppressor of crossability). SKr and Kr1 have the largest influence on the trait. In the case of the recessive alleles, these genes do not function and the quantity of hybrid seeds after pollination with alien species can achieve more than 50 %. SKr is located on 5BS between the GBR0233 and Xgwm234 markers, closely linked with the markers Xcfb341, TGlc2 and gene12. Kr1 was mapped on 5BL, proximally to the Ph1 gene, between the EST-SSR markers Xw5145 and Xw9340. The markers of SKr were used to control the transfer of its recessive allele into other wheat genotypes, which made it possible to obtain highly crossable forms. However, the advantages of using the SKr and Kr1 markers in marker-assisted selection and in the screening of ex situ collections are not sufficiently studied. The published Kr1 sequence for varieties with different crossability offers great prospects, because it will be possible to create allele-specific markers. In this review, the following issues are considered genetic resources created by wheat and rye hybridization, the geographical distribution of easy-to-cross forms of wheat, genetic control of the wheat and rye compatibility, advances of the use of molecular markers in the mapping of Kr-genes and their transmission control.Investigation of the effect of the cytoplasm on the combining ability (CA) of lines with cytoplasmic male sterility (CMS) is of considerable interest in term
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत