Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/2-aminoethanethiol.html Tuna oil was selectively hydrolysed using Thermomyces lanuginosus lipase for 6 h to prepare omega-3 acylglycerol concentrate with the DHA content significantly increased from 24.9% in tuna oil to 36.3% in the acylglycerol concentrate. The acylglycerol concentrate was subsequently encapsulated into the "multi-core" microcapsules using gelatin-sodium hexametaphosphate complex coacervates as the shell material. Rancimat, Oxipres and thermogravimetric analyses all showed that the microencapsulated acylglycerol concentrate had unexpectedly improved oxidation stability, compared to those produced using tuna oil, even though the concentrated oils themselves were significantly less stable than tuna oil. The incorporation of enzymatic tuna oil acylglycerol concentrate also significantly improved the oxidation stability of microencapsulated standard refined unconcentrated tuna oil. A wide range of characteristics including lipid and fatty acid composition, oil-in-water (O/W) emulsion properties, morphology, nanomechanical strength and physicochemical stability of acylglycerol, acylglycerol oil-in-water (O/W) emulsion and final microcapsules were investigated throughout the preparation. The result suggests that high levels of monoacylglycerol (about 35%) and diacylglycerol (about 8.5%) were produced in the acylglycerol. The acylglycerol O/W emulsion exhibited significantly smaller droplet size, lower zeta-potential and higher surface hydrophobicity, which contributed to the formation of the microcapsule with a significantly smoother surface and more compact structure, finally leading to improved oxidative stability compared to those prepared from native tuna oil.The progression of cancer has been closely-linked with augmentation of cellular reactive oxygen species (ROS) levels and ROS-associated changes in the tumour microenvironment (TME), including alterations to the extracellular matrix and associated low drug upt
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत