Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Axitinib.html maintain than the opto-acoustic geometry of conventional PA microscopy techniques. This results in a system capable of high resolution and sensitivity, imaging at real-time rates. The authors believe this work represents a vital step towards a clinical high-resolution reflection-mode video-rate PA imaging system. In summary, we present a method that has a small computational overhead for image rendering, resulting in a live display capable of real-time frame rates. We also report the first 3D imaging with a non-contact label-free reflection-mode PA technique. The all-optical confocal geometry required by PARS is significantly easier to implement and maintain than the opto-acoustic geometry of conventional PA microscopy techniques. This results in a system capable of high resolution and sensitivity, imaging at real-time rates. The authors believe this work represents a vital step towards a clinical high-resolution reflection-mode video-rate PA imaging system. Optical fiber probe spectroscopy can characterize the blood content, hemoglobin oxygen saturation, water content, and scattering properties of a tissue. A narrow probe using closely spaced fibers can access and characterize a local tissue site, but analysis requires the proper light transport theory. Monte Carlo simulations of photon transport specified the response of a two-fiber probe as a function of optical properties in a homogeneous tissue. The simulations used the dimensions of a commercial fiber probe (400-micron-diameter fibers separated by 80-microns of cladding) to calculate the response to a range of 20 absorption and 20 reduced scattering values. The 400 simulations yielded an analysis grid (lookup table) to interpolate the probe response to any given pair of absorption and scattering properties. The probe in contact with tissue is not sensitive to low absorption but sensitive to scattering, as occurs for red to near-infrared spectra. The probe is s
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत