Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pemigatinib-incb054828.html Fast Fourier transform (FFT)-based protein ligand docking together with parallel simulated annealing for both rigid and flexible receptor docking are implemented on graphical processing unit (GPU) accelerated platforms to significantly enhance the throughput of the CDOCKER and flexible CDOCKER - the docking algorithms in the CHARMM program for biomolecule modeling. The FFT-based approach for docking, first applied in protein-protein docking to efficiently search for the binding position and orientation of proteins, is adapted here to search ligand translational and rotational spaces given a ligand conformation in protein-ligand docking. Running on GPUs, our implementation of FFT docking in CDOCKER achieves a 15 000 fold speedup in the ligand translational and rotational space search in protein-ligand docking problems. With this significant speedup it becomes practical to exhaustively search ligand translational and rotational space when docking a rigid ligand into a protein receptor. We demonstrate in this pator and flexible-receptor docking studies and will further facilitate continued improvement in the physics-based scoring function employed in CDOCKER docking studies.A series of PtII-based monometallic (H2PtL), homobimetallic (Pt2L), and heterobimetallic (NiPtL and PdPtL) group 10 complexes of the previously established expanded twin porphyrin (H4L) were prepared. Structural characterization of the bimetallic PtII series (Pt2L, NiPtL, and PdPtL) revealed their similar general structures, with slight differences correlated to the ion size. An improvement of the metal-ion insertion process also allowed efficient preparation of the known Pd2L complex, and the novel heterobimetallic NiPdL complex was also structurally characterized. UV-vis spectroscopy, NMR spectroscopy, magnetic circular dichroism (MCD), and (spectro)electrochemistry were used to characterize the complexes; the electronic properties f
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत