Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/AdipoRon.html An intriguing challenge of drug discovery is targeting pathogenic mutant proteins that differ from their wild-type counterparts by only a single amino acid. In particular, pathogenic cysteine mutations afford promising opportunities for mutant-specific drug discovery, due to the unique reactivity of cysteine's sulfhydryl-containing side chain. Here we describe the first directed discovery effort targeting a pathogenic cysteine mutant of a protein tyrosine phosphatase (PTP), namely Y279C Src-homology-2-containing PTP 2 (SHP2), which has been causatively linked to the developmental disorder Noonan syndrome with multiple lentigines (NSML). Through a screen of commercially available compounds that contain cysteine-reactive functional groups, we have discovered a small-molecule inhibitor of Y279C SHP2 (compound 99; IC50 ≈ 6 μM) that has no appreciable effect on the phosphatase activity of wild-type SHP2 or that of other homologous PTPs (IC50 ≫ 100 μM). Compound 99 exerts its specific inhibitory effect through irreversible engagement of Y279C SHP2's pathogenic cysteine residue in a manner that is time-dependent, is substrate-independent, and persists in the context of a complex proteome. To the best of our knowledge, 99 is the first specific ligand of a disease-causing PTP mutant to be identified. This study therefore provides both a starting point for the development of NSML-directed therapeutic agents and a precedent for the identification of mutant-specific inhibitors of other pathogenic PTP mutants.Resistance to the last-line polymyxins is increasingly reported in multidrug-resistant Gram-negative pathogens, including Acinetobacter baumannii, which develops resistance via either lipid A modification (e.g., with phosphoethanolamine [pEtN]) or even lipopolysaccharide (LPS) loss in the outer membrane (OM). Considering these two different mechanisms, quantitative membrane lipidomics data were utilized to develop three OM
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत