Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/stc-15.html Recently, more personalized travel methods have emerged in the tourism industry, such as individual travel and self-guided travel. The service models of traditional tourism limit the diversity of service options and cannot fully meet the individual needs of tourists anymore. The aim is to integrate sparse tourism information on the Internet, thereby providing more convenient, faster, and more personalized tourism services. Based on the shortcomings of the traditional tourism recommendation system, a deep learning-based classification processing method of tourism product information is proposed. This method uses word embedding in the data preprocessing stage. The Convolutional Neural Network (CNN) is used to process review information of users and tourism service items. The Deep Neural Network (DNN) is used to process the necessary information of users and tourism service items. Also, factorization machine technology is used to learn the interaction between the extracted features to improve the prediction model. The results show that the proposed model can maintain an excellent precision of 64.2% when generating personalized recommendation lists for users. The sensitivity and accuracy of the recommendation list are better than other algorithms. By adding DNN, the word embedding method, and the factorization machine model, the precision is improved by 30%, 33.3%, and 40%, respectively. The model accuracy is the highest with 40 hidden factors, 100 convolutions, and a 100+50 combination hidden layer. Compared with traditional methods, the proposed algorithm can provide users with personalized travel products more accurately in personalized travel recommendations. The results have enriched and developed the theory of tourism service supply chain, providing a reference for constructing a personalized tourism service system.Pulmonary benign metastasizing leiomyoma (PBML) is a rare entity. We herein report a case of PBML foun
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत