Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Cediranib.html Background Commercially available physical activity trackers are very popular in the general population and are increasingly common in clinical and research settings. The marketfor activity trackers are rapidly expanding, requiring them to be validated on an ongoing basis. Different approaches have been used for validating these devices. Studies using treadmills shows good step-counting accuracy although test performed in field tests settings are limited. Research question Does step-counting validity differ between a field test and a treadmill protocol for different types of activity trackers? Methods Thirty healthy subjects participated in this study, mean age was 28.2 (± 4.33) years, body mass 78.9 (± 12.9) kg, and height 178.5 (± 9.7) cm. A treadmill protocol with three different walking speeds (2, 3 and 4 km/h) and a 982 m field test was used. During the tests, participants' feet were filmed using a waist-mounted camera. The number of steps were extracted from the video data and used for comparison with four different step counters a) Polar M200; b) Polar A300; c) Dunlop pedometer; d) Samsung Galaxy S9 smartphone. Validity and agreement determined was determined with the use of Bland-Altman plot and Spearman's correlation. Results Validity was higher for the field test compared to the 4 km/h treadmill test for all tested devices. The smartphone was the most accurate in terms of error, validity and agreement for both the treadmill and field test. All devices performed poorly for the 2 km/h treadmill test and only the smartphone performed well at 3 km/h. Significance The results of this study show that step counting validity and error obtained during treadmill walking is not similar to a field test. Future validation studies of activity trackers should consider this when designing a protocol. The smartphone had the lowest mean bias during the field test.Background Pathologic gait is common in patients with cerebr
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत