Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/srt2104-gsk2245840.html Advances in human brain imaging technologies are critical to understanding how the brain works and the diagnosis of brain disorders. Existing technologies have different drawbacks, and the human skull poses a great challenge for pure optical and ultrasound imaging technologies. Here we demonstrate the feasibility of using ultrasound-modulated optical tomography, a hybrid technology that combines both light and sound, to image through human skulls. Single-shot off-axis holography was used to measure the field of the ultrasonically tagged light. This Letter paves the way for imaging the brain noninvasively through the skull, with optical contrast and a higher spatial resolution than that of diffuse optical tomography.An optical time-domain reflectometer (OTDR) is incapable of providing sensing or diagnostic information within dead-zones. We use a two-mode fiber (TMF) and a photonic lantern to completely overcome the main OTDR's dead-zone originating from the front facet of optical fiber. This is achieved by injecting the optical pulses of the OTDR in the form of the fundamental $\rm LP_01$ mode and meanwhile collecting the Rayleigh signals associated with the higher-order modes. Using the reported TMF-based OTDR, we accurately sense the position and frequency of a vibration event located within the dead-zone as a proof-of-concept demonstration.Off-axis digital holography is an imaging technique that allows direct measurement of phase and amplitude from one image. We utilize this technique to capture displacements induced by a diffuse shear wave field with high sensitivity. A noise-correlation-based algorithm is then used to measure mechanical properties of samples. This approach enables full-field quantitative passive elastography without the need of contact or a synchronized source of a mechanical wave. This passive elastography method is first validated on agarose test samples mimicking biological tissues,
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत