Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/fadraciclib.html Our findings show how a structural change, which can be deformations along the layers, slipping of layers, or change of the interlayer distance, can induce metal-to-semiconductor or indirect-to-direct semiconductor transition, suggesting a way to adjust or even switch between the intralayer vs interlayer conductive anisotropy in Ni3(HITP)2, in particular, and 2D MOFs in general.The interfacial chemistry of diborane (B2H6) with hydroxylated silica was investigated via in situ Fourier-transform infrared spectroscopy and temperature-programmed desorption. During exposure of silica to B2H6 under ultrahigh vacuum conditions, a decline in infrared band intensity assigned to excitation of the interfacial silanol O-H vibration at 3750 cm-1 and the associated appearance of a feature at 3687 cm-1 revealed hydrogen-bonding interactions between B2H6 and interfacial silanol groups. The IR spectrum for silica was completely recovered following desorption of the adsorbates, indicating that interactions between B2H6 and clean silica are reversible, in contrast to other reports on this system. During temperature-programmed desorption of diborane from silica, B2H6 was observed to desorb between 80 and 150 K, evidence for weak interactions between B2H6 and the surface. Electronic-structure calculations revealed that these interactions were due to bifurcated dihydrogen bonds between two terminal B-H groups of the adsorbate and interfacial silanol groups.Understanding the nanostructure and nanomechanical properties of surface layers of erucamide, in particular the molecular orientation of the outermost layer, is important to its widespread use as a slip additive in polymer materials. Extending our recent observations of nanomorphologies of erucamide layers on a hydrophilic silica substrate, here we evaluate its nanostructure on a more hydrophobic polypropylene surface. Atomic force microscopy (AFM) imaging revealed the molecular pack
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत