Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/vx803-m4344.html OBJECTIVE Ultrasonic wave technology is widely used during dental treatments. We previously demonstrated that this method protects the gingival tissue. However, the physiological change on the gingival microvasculature caused by this method remains unclear. The aim of this study was to investigate the relationship between the morphological and physiological effects on gingival microcirculation when preparing teeth, using the conventional dental turbine or ultrasonic method. METHODOLOGY The lower premolar teeth of beagle dogs were prepared along the gingival margin by using a dental turbine or ultrasonic wave instrument. Gingival vasculature changes were investigated using scanning electron microscopy for corrosion resin casts. Gingival blood flow at the preparation site was determined simultaneously by laser Doppler flowmetry. These assessments were performed immediately (Day 0), at 7 days and 30 days after tooth preparation. RESULTS At day 0, in the turbine group, blood vessels were destroyed and some resin leaked. Furthermore, gingival blood flow at the site was significantly increased. In contrast, the ultrasonic group demonstrated nearly normal vasculature and gingival blood flow similar to the non-prepared group for 30 days after preparation. No significant alterations occurred in gingival circulation 30 days after either preparation; however, the turbine group revealed obvious morphological changes. CONCLUSIONS Based on multiple approach analyses, this study demonstrated that ultrasonic waves are useful for microvascular protection in tooth preparation. Compared with a dental turbine, ultrasonic wave instruments caused minimal damage to gingival microcirculation. Tooth preparation using ultrasonic wave instruments could be valuable for protecting periodontal tissue.OBJECTIVE This study aimed to assess the association between tooth size and root canal morphology by using CBCT analysis. METHODOLOGY In this re
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत