Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/nms-873.html Foam films formed at the air-water interface do not have fixed adsorption sites where adsorbed surfactants can arrange themselves, resulting in the formation of thick adsorption layers. Current theories of equilibrium foam films fail to account for this feature and significantly underestimate the adsorption layer thickness. Here we show that this thickness has a significant effect on the disjoining pressure in foam films. If ignored, the theory predicts unphysical electrostatic potential profiles, which underestimate the disjoining pressure. We apply a previously developed adsorption model that incorporates a realistic thickness for the adsorption layer. This new model reproduces experimental measurements of the disjoining pressure of foam films very well over a wide surfactant concentration range without fitting parameters. Our work shows that a thick adsorption layer is less effectively screened by counterions, resulting in a higher electrostatic potential inside the film and therefore a higher disjoining pressure.Hairpin ribozyme catalyzes the reversible self-cleavage of phosphodiester bonds which plays prominent roles in key biological processes involving RNAs. Despite impressive advances on ribozymatic self-cleavage, critical aspects of its molecular reaction mechanism remain controversially debated. Here, we generate and analyze the multidimensional free energy landscape that underlies the reaction using extensive QM/MM metadynamics simulations to investigate in detail the full self-cleavage mechanism. This allows us to answer several pertinent yet controversial questions concerning activation of the 2'-OH group, the mechanistic role of water molecules present in the active site, and the full reaction pathway including the structures of transition states and intermediates. Importantly, we find that a sufficiently unrestricted reaction subspace must be mapped using accelerated sampling methods in order to comput
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत