Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Tranilast.html Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy. Brain invasion by meningioma is a stand-alone criterion for tumor atypia in the 2016 World Health Organization classification, but no imaging parameter has yet been shown to be sufficient for predicting it. The aim of this study was to develop and validate an MRI-based radiomics model from the brain-to-tumor interface to predict brain invasion by meningioma. Preoperative T2-weighted and contrast-enhanced T1-weighted imaging data were obtained from 454 patients (88 patients with brain invasion) between 2012 and 2017. Feature selection was performed from 3222 radiomics features obtained in the 1 cm thickness tumor-to-brain interface region using least absolute shrinkage and selection operator. Peritumoral edema volume, age, sex, and selected radiomics features were used to construct a random forest classifier-based diagnostic model. The performance was evaluated using the areas under the curves (AUCs) of the receiver operating characteristic in an independent cohort of 150 patients (29 patients with brain invasion) between 2018 and 2019. Volume of peritumoral edema was an independent predictor of brain invasion (P < 0.001). The top 6 interface radiomics features plus the volume of peritumoral edema were selected for model construction. The combined model showed the highest performance for prediction of brain invasion in the training (AUC 0.97; 95% CI 0.95-0.98) and validation sets (AUC 0.91; 95% CI 0.84-0.98), and improved diagnostic performance over volume of peritumoral edema only (AUC 0.76; 95% CI 0.66-0.86). An imaging-based model combining interface radiomics and peritumoral edema can help to predict brain invasion by meningioma and improve the diagnostic performance of known clinical and imaging parameters. An imaging-based
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत