Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/pt2385.html Advances made in fabrication of patterned surfaces with well-defined dimensions of topographic features and their lateral dissemination drive the progress in interpretation of liquid spreading, adhesion, and retreat on engineered solid surfaces. Despite extensive studies on liquid droplet spreading and adhesion on textured surfaces in recent years, conformation of the three-phase contact line and its effect on macroscopic contact angle and droplet adhesion remain the focus of intensive debate. Here, we investigate the effect of surface topography on the adhesion force of Cassie-Baxter-state droplets on concentric ring-textured hydrophobic surfaces having rings with lateral dimensions of 5, 10, and 45 μm and separated by 5, 6, and 7 μm trenches, respectively, with fixed depth of 15 μm. Unlike mostly tested surfaces textured with straight ridges, pores, and pillars, where the droplet base contact line is anisotropic and its conformation varies along the apparent boundary, concentric rings are symmetrical and reinforce the microscopic contact line to align to a circular one that reflects the shape of the pattern. In this study, adhesion forces were calculated based on surface tension and Laplace pressure forces and were compared with the experimental forces for both water and ethylene glycol droplets having a varying contact diameter on the concentric ring-pattern at the point of maximum adhesion force. Results show that the microscopic contact line of the liquid retains its circular shape controlled by circular rings of the pattern, irrespectively of the droplet base diameter larger than 0.8 mm, and there is a good agreement between the experimental and calculated adhesion forces.A general and practical method for decarboxylative hydroxylation of carboxylic acids was developed through visible light-induced photocatalysis using molecular oxygen as the green oxidant. The addition of NaBH4 to in situ reduce the unstable pe
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत