Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/sgc-cbp30.html The performance of photoelectrodes is hugely affected by the preparation method. Although a flux synthesis is useful to endow semiconductor particles with the desired properties such as high crystallinity, there are only a few reports on its application to photoelectrode fabrication, probably because relatively high temperatures are necessary. In the present study, we introduce a new concept for on-site flux synthesis of semiconductor crystals on a commonly used fluorine-doped tin oxide (FTO) substrate; a seed layer is predeposited and then treated with an appropriate flux containing other required elements at a right temperature lower than the limit temperature of FTO but sufficiently high to transform the seed layer to the target material with the aid of flux. Here, an oxyhalide PbBiO2Cl, one of the promising semiconductors for achieving visible-light water splitting, is selected as a target material. Combination of a BiOCl seed layer and the NaCl-PbCl2 flux containing other precursors enables the seed layer to transform into PbBiO2Cl crystals even at 450 °C. The thickness of the PbBiO2Cl layer can be controlled by changing the thickness of the BiOCl seed layer for efficient photon-to-current conversion. Owing to a good contact at the semiconductor-substrate interfaces as well as the high quality of PbBiO2Cl crystals, the flux-synthesized PbBiO2Cl photoelectrode shows a significantly improved PEC performance compared with those prepared from the particulate PbBiO2Cl samples via the conventional squeegee method. In addition, the present PbBiO2Cl photoelectrodes exhibit both anodic and cathodic photoresponses with substantially high current values depending on the applied potentials; the unusual phenomenon is affected by the conditions in flux-assisted synthesis. The present study provides a new and effective way for fabricating efficient photoelectrodes of various semiconductors on various substrates and a possibl
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत