Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/screening-libraries.html Regenerative medicine (RM) is an interdisciplinary field that uses different approaches to accelerate the repair and regeneration or replace damaged or diseased human cells or tissues to achieve normal tissue function. These approaches include the stimulation of the body's own repair processes, transplantation of progenitor cells, stem cells, or tissues, as well as the use of cells and exosomes as delivery-vehicles for cytokines, genes, or other therapeutic agents. COVID-19 pneumonia is a specific disease consistent with diffuse alveolar damage resulting in severe hypoxemia. Therefore, the most serious cause of death from COVID-19 is lung dysfunction. Here, we consider RM approaches to cure COVID-19 pneumonia based on what RM has so far used to treat lung diseases, injuries, or pneumonia induced by other pathogens. These approaches include stem and progenitor cell transplantation, stem cell-derived exosomes, and microRNAs therapy.Aims and Scope Computed tomography (CT) is one of the most efficient clinical diagnostic tools. The main goal of CT is to reproduce an acceptable reconstructed image of an object (either anatomical or functional behaviour) with the help of a limited set of projections at different angles. To achieve this goal, one of the most commonly iterative reconstruction algorithm called Maximum Likelihood Expectation Maximization (MLEM) is used. The conventional Maximum Likelihood (ML) algorithm can achieve quality images in CT. However, it still suffers from optimal smoothing as the number of iterations increases. For solving this problem, this paper presents a novel statistical image reconstruction algorithm for CT, which utilizes a nonlocal means of fuzzy complex diffusion as a regularization term for noise reduction and edge preservation. The proposed model was evaluated on four test cases phantoms. Qualitative and quantitative analyses indicate that the proposed technique has higher efficiency
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत