Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/colivelin.html The proposed methodology was then successfully applied for a quantitative determination of the examined elements in wastewater (ERM-CA713) and spiked water samples. The recoveries of the elements added to these waters (at the maximum acceptable levels in drinking water set by the U.S. Environmental Protection Agency) ranged between 81 and 104%, confirming the excellent accuracy, usefulness, and reliability of the developed HG-FLA-APGD technique.A simple analytical procedure has been developed for the determination of trace rare earth elements (REEs) in uranium materials by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), after selective extraction of uranium matrix using tri(2-ethylhexyl)phosphate (TEHP). The separation method reduces uranium concentration in the raffinate to less than 10 mg L-1 (from initial value of ~40,000 mg L-1), thus, eliminating severe matrix interferences from uranium, such as isobaric and polyatomic interferences in ICP-MS, and spectral interferences in ICP-OES. The raffinate is directly used for the analysis of REEs, without any pretreatment. The proposed method was validated by applying it to the ICP-MS determination of REEs in uranium dioxide (UO2) samples, by spiking with standard reference REE solutions and performing the recovery tests. The recoveries ranged from 94.0 to 105.5%. The validation was also performed similarly for ICP-OES measurements on U3O8 as well as UO2 samples, which provided recoveries in the ranges of 96-105.8% and 99.2-101.6%, respectively. The method offers a fast, simple and effective method with low detection limit, and is suggested for the determination of REEs in uranium-based nuclear grade materials such as uranyl nitrate hexahydrate, uranium hexafluoride and uranium trioxide.The present study proposed a novel and highly selective and sensitive method for Ag+ ion detection based on
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत