Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/deg-77.html 11g.22125964T>C) in CASC15 was interaction with a higher cervical cancer risk in subjects aged ≤51 years in the co-dominant model (OR = 2.08, 95% CI = 1.02-4.25, p = .044) and the recessive model (OR = 2.11, 95% CI = 1.05-4.24, p = .036). Whereas no significant correlation was found among other SNPs of CASC15 polymorphisms and the risk of cervical cancer. MDR analysis illustrated that the interaction between rs7740084 (NC_000006.11g.21727531G>A), rs1555529 (NC_000006.11g.21691704A>G), and rs12212674 had a certain effect on the progress of cervical cancer. CONCLUSION Our results revealed a potential interaction between CASC15 polymorphisms and cervical cancer susceptibility. The results provided important insights into CASC15 function in the development of cervical cancer. © 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.Macroporous scaffolds are being increasingly used in regenerative medicine and tissue repair. While the recently developed microporous annealed particle (MAP) scaffolds have overcome issues with injectability and in situ hydrogel formation, limitations with respect to tunability to be able to manipulate hydrogel strength and rigidity for broad applications still exist. To address these key issues, here hydrogel microparticles (HMPs) of hyaluronic acid (HA) are synthesized using the thiol-norbornene click reaction and then HMPs are subsequently annealed into a porous scaffold using the tetrazine-norbornene click reaction. This assembly method allows for straightforward tuning of bulk scaffold rigidity by varying the tetrazine to norbornene ratio, with increasing tetrazine resulting in increasing scaffold storage modulus, Young's modulus, and maximum stress. These changes are independent of void fraction. Further incorporation of human dermal fibroblasts throughout the porous scaffold reveals the biocompatibility of this annealing strategy as well as difference
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत