Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/AZD0530.html We designed an EM-based approach, which can be directly applied to the experimental data without data classification and division into training and test observations. This approach performs well even when the sample size is small and when the unfolding transitions are characterized by overlapping force ranges.Using polarization-resolved Raman spectroscopy, we investigate layer number, temperature, and magnetic field dependence of Raman spectra in one- to four-layer CrI3. Layer-number-dependent Raman spectra show that in the paramagnetic phase a doubly degenerated Eg mode of monolayer CrI3 splits into one Ag and one Bg mode in N-layer (N > 1) CrI3 due to the monoclinic stacking. Their energy separation increases in thicker samples until an eventual saturation. Temperature-dependent measurements further show that the split modes tend to merge upon cooling but remain separated until 10 K, indicating a failed attempt of the monoclinic-to-rhombohedral structural phase transition that is present in the bulk crystal. Magnetic-field-dependent measurements reveal an additional monoclinic distortion across the magnetic-field-induced layered antiferromagnetism-to-ferromagnetism phase transition. We propose a structural change that consists of both a lateral sliding toward the rhombohedral stacking and a decrease in the interlayer distance to explain our experimental observations.Conductive metal-organic frameworks (MOFs) have a wide range of applications in supercapacitors, electrocatalysts, and fuel cells, while gas-driven conductive MOFs have not yet been synthesized so far. Herein, we report a gas-driven conductive MOF (A) constructed from calix[4]resorcinarene macrocycle and Co(II) cations, which shows the conductivity enhancement by about eight orders of magnitude through NO2 adsorption. The conductivities of MOF A before and after the adsorption of NO2 were calculated to be about 1.3 × 10-11 and 8.4 × 10-4 S/cm, respectiv
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत