Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ Understanding the different effects of chemical substances on human proteins is fundamental for designing new drugs. It is also important for elucidating the different mechanisms of action of drugs that can cause side-effects. In this context, computational methods for predicting chemical-protein interactions can provide valuable insights on the relation between therapeutic chemical substances and proteins. Their predictions therefore can help in multiple tasks such as drug repurposing, identifying new drug side-effects, etc. Despite their useful predictions, these methods are unable to predict the different implications - such as change in protein expression, abundance, etc, - of chemical - protein interactions. Therefore, In this work, we study the modelling of chemical-protein interactions' effects on proteins activity using computational approaches. We hereby propose using 3D tensors to model chemicals, their target proteins and the effects associated to their interactions. We then use multi-part embedding tensor factorisation to predict the different effects of chemicals on human proteins. We assess the predictive accuracy of our proposed method using a benchmark dataset that we built. We then show by computational experimental evaluation that our approach outperforms other tensor factorisation methods in the task of predicting effects of chemicals on human proteins.Research to support precision medicine for leukemia patients requires integration of biospecimen and clinical data. The Observational Medical Outcomes Partnership common data model (OMOP CDM) and its Specimen table presents a potential solution. Although researchers have described progress and challenges in mapping electronic health record (EHR) data to populate the OMOP CDM, to our knowledge no studies have described populating the OMOP CDM with biospecimen data. Using biobank data from our institution, we mapped 26% of biospecimen records to the OMOP Specimen table. Re
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत