Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/acetylcysteine.html sting clinical decision support, including state-level prescription drug monitoring programs.Background Surveying the scientific literature is an important part of early drug discovery; and with the ever-increasing amount of biomedical publications it is imperative to focus on the most interesting articles. Here we present a project that highlights new understanding (e.g. recently discovered modes of action) and identifies potential drug targets, via a novel, data-driven text mining approach to score type 2 diabetes (T2D) relevance. We focused on monitoring trends and jumps in T2D relevance to help us be timely informed of important breakthroughs. Methods We extracted over 7 million n-grams from PubMed abstracts and then clustered around 240,000 linked to T2D into almost 50,000 T2D relevant 'semantic concepts'. To score papers, we weighted the concepts based on co-mentioning with core T2D proteins. A protein's T2D relevance was determined by combining the scores of the papers mentioning it in the five preceding years. Each week all proteins were ranked according to their T2D relevance. Furthermore, the historical distribution of changes in rank from one week to the next was used to calculate the significance of a change in rank by T2D relevance for each protein. Results We show that T2D relevant papers, even those not mentioning T2D explicitly, were prioritised by relevant semantic concepts. Well known T2D proteins were therefore enriched among the top scoring proteins. Our 'high jumpers' identified important past developments in the apprehension of how certain key proteins relate to T2D, indicating that our method will make us aware of future breakthroughs. In summary, this project facilitated keeping up with current T2D research by repeatedly providing short lists of potential novel targets into our early drug discovery pipeline.Traditional univariate genome-wide association studies generate false positives
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत