Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/crenolanib-cp-868596.html The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies that may be useful for preventing potential future coronavirus outbreaks.Many RNAs fold into multiple structures at equilibrium. The classical stochastic sampling algorithm can sample secondary structures according to their probabilities in the Boltzmann ensemble, and is widely used, e.g., for accessibility prediction. However, the current sampling algorithm, consisting of a bottom-up partition function phase followed by a top-down sampling phase, suffers from three limitations (a) the formulation and implementation of the sampling phase are unnecessarily complicated; (b) much redundant work is repeatedly performed in the sampling phase; (c) the partition function runtime scales cubically with the sequence length. These issues prevent it from being used for full-length viral genomes such as SARS-CoV-2. To address these problems, we first present a hypergraph framework under which the sampling algorithm can be greatly simplified. We then present three sampling algorithms under this framework of which two eliminate redundant work in the sampling phase. Finally, we present LinearSampling, an end-to-end linear-time sampling algorithm that is orders of magnitude faster than the standard algorithm. For instance, LinearSampling is 111 times faster (48s vs. 1.5h) than Vienna RNAsubopt on the longest sequence in the RNAcentral dataset that RNAsubopt can run (15,780 nt). More importantly, LinearSampling is the first sampling algorithm to scale to the full genome of SARS-CoV-2, taking only 96 seconds on its reference sequence (29,903 nt). It finds 23 regions of 15 nt with high accessibilities, which can be potentially used for COVID-19 diagnostics and drug design.Infection or vaccination induces a population of long-lived bone marrow plasma cells (BMPCs) t
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत