Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cq31.html DNA polymerase β (Pol β) repairs cellular DNA damage. When such damage is inflicted upon the DNA in tumor cells treated with DNA targeted antitumor agents, Pol β thus diminishes their efficacy. Accordingly, this enzyme has long been a target for antitumor therapy. Although numerous inhibitors of the lyase activity of the enzyme have been reported, none has yet proven adequate for development as a therapeutic agent. In the present study, we developed a new strategy to identify lyase inhibitors that critically engage the lyase active site primary nucleophile Lys72 as part of the binding interface. This involves a parallel evaluation of the effect of the inhibitors on the wild-type DNA polymerase β (Pol β) and Pol β modified with a lysine analogue at position 72. A model panel of five structurally diverse lyase inhibitors identified in our previous studies (only one of which has been published) with unknown modes of binding were used for testing, and one compound, cis-9,10-epoxyoctadecanoic acid, was found to have the desired characteristics. This finding was further corroborated by in silico docking, demonstrating that the predominant mode of binding of the inhibitor involves an important electrostatic interaction between the oxygen atom of the epoxy group and Nε of the main catalytic nucleophile, Lys72. The strategy, which is designed to identify compounds that engage certain structural elements of the target enzyme, could find broader application for identification of ligands with predetermined sites of binding.G-quadruplex DNA plays a very important role in clinical diagnosis and fluorescence analysis has attracted extensive attention. A class of carbazole-based fluorescent probes for the detection of G-quadruplex DNA was established in this work. In this system, the installation of an oligo(ethylene glycol) chain on the scaffold will improve the water-solubility and biocompatibility. The presence of styrene-like diffe
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत