Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/otx015.html Proton conductive materials have attracted extensive interest in recent years due to their fascinating applications in sensors, batteries, and proton exchange membrane fuel cells. Herein, two Fe-diphosphonate chains (H4-BAPEN)0.5·[FeIII(H-HEDP)(HEDP)0.5(H2O)] (1) and (H4-TETA)2·[FeIII2FeII(H-HEDP)2(HEDP)2(OH)2]·2H2O (2) (HEDP = 1-hydroxyethylidenediphosphonate, BAPEN = 1,2-bis(3-aminopropylamino)ethane, and TETA = triethylenetetramine) with different templating agents were prepared by hydrothermal reactions. The valence states of the Fe centers were demonstrated by 57Fe Mössbauer spectra at 100 K, with a high-spin FeIII state for 1 and mixed high-spin FeIII/FeII states for 2. Their magnetic properties were determined, which featured strong antiferromagnetic couplings in the chain. Importantly, the proton conductivity of both compounds at 100% relative humidity was explored at different temperatures, with 2.79 × 10-4 S cm-1 at 80 °C for 1 and 7.55 × 10-4 S cm-1 at 45 °C for 2, respectively. This work provides an opportunity for improving proton conductive properties by increasing the relative number of protons and the carrier density using protonated flexible aliphatic amines.Activation of the strongest triplet bond in molecular nitrogen (N2) under mild conditions is particularly challenging. Recently, its fixation and reduction were achieved by highly reactive dicoordinated borylene species at ambient conditions, ripping the limits of harsh reaction conditions by metallic species. Less reactive species with a facile preparation could be desirable for next-generation N2 activation. Now density functional theory calculations reveal that tricoordinated boranes could be a potential candidate of N2 activation/functionalization. As composites of an intramolecular frustrated Lewis pair (FLP), optimal and realistic boranes are screened out to activate N2 in a significantly favorable manner (both thermodynamically and kinetica
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत