Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/BIBF1120.html Wheat millstreams and wheat-based foods (pasta, biscuits and bread) enriched or not in dietary fibre with fractions extracted from wheat grains, have been characterized either for their total dietary fibre content (TDF) and their arabinoxylan (AX) content. A strong correlation (r2 = 0.98) is observed between the AX and TDF contents indicating that AX can be used to estimate TDF content in wheat products. Moreover, by adding a previous step including enzymatic hydrolysis with a xylanase, a functional evaluation of DF is proposed based on the amount of AX released by the enzyme. Xylanase hydrolysable AX are likely also released by microbiota's enzymes in the gut and therefore an indicator for the proportion of fermentable DF in grain fractions and wheat-based foods (pasta, biscuits and bread). This assay opens the door for simple characterization of qualitative attribute of cereal DF.The effects of different microwave heating (MH) methods on gelation properties of golden threadfin bream myosin and related mechanism were investigated in this study. Compared with conventional heating and one-step MH methods, myosin gel developed by 100 W coupled with 300 W MH method (MH100 + MH300) had stronger gel strength (p less then 0.05) with more immobilized water (p less then 0.05). Raman analysis suggested that this two-step method promoted the suitable unfolding of myosin before aggregation formation, and contributed to stabilizing the ordered secondary structure. Confocal laser scanning microscopy images revealed that 100 W microwave followed by 300 W MH produced a compact networked structure with small cavities and a thick cross-linked gel wall. Furthermore, from a perspective of molecular forces, the improvement of gelation properties by the MH100 + MH300 method were mainly involved in the enhancement of regular hydrophobic interaction and stabilization of weak protein-water hydrogenbonds.Poly(1H-1,2,4-triazole-3-thiol) (pol
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत