Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cm-4620.html In this work, we propose and demonstrate a near-unity light absorber in the ultra-violet to near-infrared range (300-1100 nm) with the average efficiency up to 97.7%, suggesting the achievement of black absorber. The absorber consists of a wavy surface geometry, which is formed by the triple-layer of ITO (indium tin oxide)-Ge (germanium)-Cu (copper) films. Moreover, the minimal absorption is even above 90% in the wide wavelength range from 300 nm to 1015 nm, suggesting an ultra-broadband near-perfect absorption window covering the main operation range for the conventional semiconductors. Strong plasmonic resonances and the near-field coupling effects located in the spatially geometrical structure are the key contributions for the broadband absorption. The absorption properties can be well maintained during the tuning of the polarization and incident angles, indicating the high tolerance in complex electromagnetic surroundings. These findings pave new ways for achieving high-performance optoelectronic devices based on the light absorption over the full-spectrum energy gap range.The use of photo-activated fluorescent molecules to create long sequences of low emitter-density diffraction-limited images enables high-precision emitter localization, but at the cost of low temporal resolution. We suggest combining SPARCOM, a recent high-performing classical method, with model-based deep learning, using the algorithm unfolding approach, to design a compact neural network incorporating domain knowledge. Our results show that we can obtain super-resolution imaging from a small number of high emitter density frames without knowledge of the optical system and across different test sets using the proposed learned SPARCOM (LSPARCOM) network. We believe LSPARCOM can pave the way to interpretable, efficient live-cell imaging in many settings, and find broad use in single molecule localization microscopy of biological structures.Laser
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत