Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cp21r7-cp21.html , what concerns should be addressed, and how the exchange mechanisms could be modified to meet consumers' needs. An accurate and reproducible method to delineate tumor margins is of great importance in clinical diagnosis and treatment. In nasopharyngeal carcinoma (NPC), due to limitations such as high variability, low contrast, and discontinuous boundaries in presenting soft tissues, tumor margin can be extremely difficult to identify in magnetic resonance imaging (MRI), increasing the challenge of NPC segmentation task. The purpose of this work is to develop a semiautomatic algorithm for NPC image segmentation with minimal human intervention, while it is also capable of delineating tumor margins with high accuracy and reproducibility. In this paper, we propose a novel feature selection algorithm for the identification of the margin of NPC image, named as modified random forest recursive feature selection (MRF-RFS). Specifically, to obtain a more discriminative feature subset for segmentation, a modified recursive feature selection method is applied to the original handcrafted feature set. Moreover, we combine the proposed feature selection method with the classical random forest (RF) in the training stage to take full advantage of its intrinsic property (i.e., feature importance measure). To evaluate the segmentation performance, we verify our method on the T1-weighted MRI images of 18 NPC patients. The experimental results demonstrate that the proposed MRF-RFS method outperforms the baseline methods and deep learning methods on the task of segmenting NPC images. The proposed method could be effective in NPC diagnosis and useful for guiding radiation therapy. The proposed method could be effective in NPC diagnosis and useful for guiding radiation therapy. It remains to be determined whether noninvasive functional imaging techniques can rival the clinical potential of direct electrocortical stimulation (DES). In
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत