Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tvb-3664.html 4%) patients died, whereas in the non-ibuprofen group, 9 (2.8%) patients died (p 0.95). Nine (10.3%) patients from the ibuprofen group needed respiratory support, compared with 35 (11%) from the non-ibuprofen group (p 1). When compared with exclusive paracetamol users, no differences were observed in mortality rates or the need for respiratory support among patients using ibuprofen. Conclusions In this cohort of COVID-19 patients, ibuprofen use was not associated with worse clinical outcomes, compared with paracetamol or no antipyretic.Phoma macdonaldii causes black stem of sunflower, which severely affects sunflower yield and quality. There is currently little molecular information available for this pathogenic fungus. In this study, a global proteomic analysis of P. macdonaldii was performed to determine the biological characteristics and pathogenicity of this pathogen. A total of 1498 proteins were identified by LC-MS/MS in all biological replicates. Among the identified proteins, 1420 proteins were classified into the three main GO categories (biological process, cellular component, and molecular function) while 806 proteins were annotated into the five major KEGG database (metabolism, genetic information processing, environmental information processing, cellular processes, and organismal systems). The regulated expression levels of eight genes encoding selected identified proteins were investigated to assess their potential effects on fungal development and pathogenesis. To the best of our knowledge, this is the first study to characterize the proteome of the necrotrophic fungus P. macdonaldii. The presented results provide novel insights into the development and pathogenesis of P. macdonaldii and possibly other Phoma species. SIGNIFICANCE Black stem of sunflower is a devastating disease caused by the necrotrophic fungus Phoma macdonaldii. Relatively little is known regarding the molecular characteristics of th
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत