Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/nx-1607.html Lignin is a potential biomass feedstock from plant material, but it is particularly difficult to economically process. Inspired by recent ball-milling results, state-of-the-art quantum mechanochemistry calculations have been performed to isolate and probe the purely mechanochemical stretching effect alone upon acid-catalyzed deconstruction of lignin. Effects upon cleavage of several exemplary simple ethers are examined first, and with low stretching force they all are predicted to cleave substantially faster, allowing for use of milder acids and lower temperatures. Effects upon an experimentally known lignin fragment model (containing the ubiquitous β-O-4 linkage) are next examined; this first required a mechanism refinement (3-step indirect cleavage, 1-step side reaction) and identification of the rate-limiting step under zero-force (thermal) conditions. Mechanochemical activation using very low stretching forces improves at first only yield, by fully shutting off the ring-closure side reaction. At only somewhat larger forces, in stark contrast, a switch in mechanism is found to occur, from 3-step indirect cleavage to the direct cleavage mechanism of simple ethers, finally strongly enhancing the cleavage rate of lignin. It is concluded that mechanochemical activation of the common β-O-4 link in lignin would improve the rate of its acidolysis via a mechanism switch past a low force threshold. Relevance to ball-milling experiments is discussed. This study factor analyzes six scales relating to acculturation and related experiences among a nationally representative sample of United States-residing Latina/os (n = 2,541) from the National Latino and Asian American Study (NLAAS), using measurement invariance (MI) testing to explore differences in latent constructs by Latina/o subgroup. Factor Analysis (FA) within an Exploratory Structural Equation Modeling framework was used to analyze the factor structure of six scales m
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत