Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Aurora-A-Inhibitor-I.html Lipase-catalyzed hydrolytic kinetic resolution is a method of obtaining optically pure chiral alcohols and amines, which requires additional tools for determining enantiomerical purity. Herein, we present a study on multigram-scale hydrolytic kinetic resolution of trans-2-azidocyclohexyl acetate using Pseudomonas cepacia lipase immobilized on Immobead support. We investigated several parameters of the preparative-scale process temperature, organic co-solvent, and the influence of calcium ions. Moreover, we have developed an efficient fluorenylmethyloxycarbonyl chloride (Fmoc-Cl) derivatization protocol for 2-azidocyclohexanol, which enabled chiral reversed-phase high-performance liquid chromatography (RP-HPLC) determination of enantiomeric excess. Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system based on deep convolutional neural network (DCNN) and transfer learning. To classify VCLs, our method combined the DCNN backbone with transfer learning on a system specifically finetuned for a laryngoscopy image dataset. Laryngoscopy image database was collected to train the proposed system. The diagnostic performance was compared with other DCNN-based models. Analysis of F1 score and receiver operating characteristic curves were conducted to evaluate the performance of the system. Beyond the existing VCLs diagnosis method, the proposed system achieved an overall accuracy of 80.23%, an F1 score of 0.7836, and an area under the curve (AUC) of 0.9557 for four fine-grained classes of VCLs, namely, normal, polyp, keratinization, and carcinoma. It also demonstrated robust cgoscopy as a highly objective auxiliary method.An enantioselective domino process for the synthesis of substituted 1,2-dihydronaphthalenes has been developed by
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत