Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/s64315-mik665.html BACKGROUND Electronic medical record (EMR) systems capture large amounts of data per patient and present that data to physicians with little prioritization. Without prioritization, physicians must mentally identify and collate relevant data, an activity that can lead to cognitive overload. To mitigate cognitive overload, a Learning EMR (LEMR) system prioritizes the display of relevant medical record data. Relevant data are those that are pertinent to a context-defined as the combination of the user, clinical task, and patient case. To determine which data are relevant in a specific context, a LEMR system uses supervised machine learning models of physician information-seeking behavior. Since obtaining information-seeking behavior data via manual annotation is slow and expensive, automatic methods for capturing such data are needed. OBJECTIVE The goal of the research was to propose and evaluate eye tracking as a high-throughput method to automatically acquire physician information-seeking behavior useful for tiver operating characteristic curve (P=.40). CONCLUSIONS We used eye tracking to automatically capture physician information-seeking behavior and used it to train models for a LEMR system. The models that were trained using eye tracking performed like models that were trained using manual annotations. These results support further development of eye tracking as a high-throughput method for training clinical decision support systems that prioritize the display of relevant medical record data. ©Andrew J King, Gregory F Cooper, Gilles Clermont, Harry Hochheiser, Milos Hauskrecht, Dean F Sittig, Shyam Visweswaran. Originally published in the Journal of Medical Internet Research (http//www.jmir.org), 02.04.2020.BACKGROUND The worldwide expansion of preexposure prophylaxis (PrEP) with oral tenofovir-disoproxil-fumarate/emtricitabine will be critical to ending the HIV epidemic. However, maintaining daily adherence
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत