Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/gsk1016790a.html Scalable centrifugal force made it possible to adjust the injection speed of the organic solvent into the aqueous solution in the DLLME step by changing the spin speed. Spin speed of 100 rpm was used in dispersion step and spin speed of 3500 rpm was used to sediment organic phase in DLLME step. The proposed device provides effective and reproducible extraction using a low volume of the sample solution. After optimization of the effective parameters, an EME-DLLME followed by GC-MS was performed for determination of amitriptyline and imipramine in saliva, urine, and blood plasma samples. The method provides extraction recoveries and preconcentration factors in the range of 43%-70.8% and 21.5-35.5 respectively. The detection limits less than 0.5 μg L-1 with the relative standard deviations of the analysis which were found in the range of 1.9%-3.5% (n = 5). The method is suitable for drug monitoring and analyzing biofluids containing low levels of the model analytes. Multi-target detection has been widely applied for the sensitive measurement of cancer-related biomarkers; however, the design and application of single platforms for diverse target detection are still challenging. Herein, a robust and sensitive electrochemiluminescence (ECL) biosensing platform was constructed for the measurement of microRNA-21 (miRNA-21) and mucin 1 (MUC1) based on dual catalytic hairpin assembly (DCHA). The catalytic hairpin assembly (CHA) process (Cycle I) was initiated by the target miRNA-21 to introduce abundant CdSMn quantum dots (CdSMn QDs) on the electrode surface, leading to a considerable ECL response and the sensitive detection of miRNA-21 with a limit of detection as low as 11 aM. Subsequently, the second CHA process (Cycle II) was triggered by the MUC1-aptamer complex, which allowed copious amounts of Au nanoparticles (AuNPs) to approach the CdSMn QDs. A decreased ECL signal was obtained due to the ECL resonance energy tran
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत