Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/agk2.html 39-20.96%, 0.03-7.95%, and 0.39-14.15% in Pw1 and 0.23-15.68%, 0.01-15.68%, and 0.53-26.77% in Cd1, respectively. The adsorption/uptake was significantly correlated with the perfluoroalkyl chain length (p less then 0.05), except for the uptake of biofilms in C. demersum. Furthermore, PFAAs and submerged macrophytes could decrease the richness of microbiota but increase the relative abundance of some strains in Betaproteobacteriales, Sphingomonadales, and Cytophagales. Our results were helpful for understanding the removal processes of PFAAs in constructed wetlands and their linkages with PFAA properties, thus further providing insight into the management and removal of emerging organic contaminants.Engineered nanoparticles are observed to be released into the environment and ended up in wastewater treatment plants. It has been reported that these nanoparticles in sewage might have a toxic effect on microorganisms, and thus affect anaerobic microbial fermentation. However, the mechanisms involved in nanoparticles-induced effects on the anaerobic acidification process and its related bacterial metabolism are still unclear. This work indicated that copper nanoparticles (Cu NPs) were able to cause cell membrane oxidative damage and inhibit the growth and metabolism of Moorella thermoacetica (a model acetogen). The OD600 and acetic acid production of M. thermoacetica in the presence of 1 mg/L of Cu NPs were decreased to 29.2% and 40.7% of the control, respectively. The key mechanism of the inhibitory effect was governed by the fact that Cu NPs significantly reduced the glucose consumption, and led to the decreased pyruvate metabolism levels. Additionally, Cu NPs inhibited the gene expressions and catalytic activities of the key enzymes related to acetic acid production. It was identified that the relative activities of phosphofructokinase, pyruvate kinase, phosphotransacetylase, and acetate kinase of M. thermoacetica in the
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत