Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/4-Methylumbelliferone(4-MU).html Nonribosomal peptide synthetases (NRPSs) are large, multidomain biosynthetic enzymes involved in the assembly-line-like synthesis of numerous peptide natural products. Among these are clinically useful antibiotics including three classes of β-lactams the penicillins/cephalosporins, the monobactams, and the monocyclic nocardicins, as well as the vancomycin family of glycopeptides and the depsipeptide daptomycin. During NRPS synthesis, peptide bond formation is catalyzed by condensation (C) domains, which couple the nascent peptide with the next programmed amino acid of the sequence. A growing number of additional functions are linked to the activity of C domains. In the biosynthesis of the nocardicins, a specialized C domain prepares the embedded β-lactam ring from a serine residue. Here, we examine the evolutionary descent of this unique β-lactam-synthesizing C domain. Guided by its ancestry, we predict and demonstrate in vitro that this C domain alternatively performs peptide bond formation when a single stereochemical change is introduced into its peptide starting material. Remarkably, the function of the downstream thioesterase (TE) domain also changes. Natively, the TE directs C terminus epimerization prior to hydrolysis when the β-lactam is made but catalyzes immediate release of the alternative peptide. In addition, we investigate the roles of C-domain histidine residues in light of clade-specific sequence motifs, refining earlier mechanistic proposals of both β-lactam formation and canonical peptide synthesis. Finally, expanded phylogenetic analysis reveals unifying connections between β-lactam synthesis and allied C domains associated with the appearance of ᴅ-amino acid and dehydroamino acid residues in other NRPS-derived natural products.The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is centra
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत