Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/wh-4-023.html Heat engines performing finite time Carnot cycles are described by positive irreversible entropy functions added to the ideal reversible entropy part. The model applies for macroscopic and microscopic (quantum mechanical) engines. The mathematical and physical conditions for the solution of the power maximization problem are discussed. For entropy models which have no reversible limit, the usual "linear response regime" is not mathematically feasible; i.e., the efficiency at maximum power cannot be expanded in powers of the Carnot efficiency. Instead, a physically less intuitive expansion in powers of the ratio of heat-reservoir temperatures holds under conditions that will be inferred. Exact solutions for generalized entropy models are presented, and results are compared. For entropy generation in endoreversible models, it is proved for all heat transfer laws with general temperature-dependent heat resistances, that minimum entropy production is achieved when the temperature of the working substance remains constant in the isothermal processes. For isothermal transition time t, entropy production then is of the form a/[tf(t)±c] and not just equal to a/t for the low-dissipation limit. The cold side endoreversible entropy as a function of transition times inevitably experiences singularities. For Newtonian heat transfer with temperature-independent heat conductances, the Curzon-Ahlborn efficiency is exactly confirmed, which-only in this unique case-shows "universality" in the sense of independence from dissipation ratios of the hot and cold sides with coinciding lower and upper efficiency bounds for opposite dissipation ratios. Extended exact solutions for inclusion of adiabatic transition times are presented.Colloidal gels formed by strongly attractive particles at low particle volume fractions are composed of space-spanning networks of uniformly sized clusters. We study the thermal fluctuations of the clusters usin
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत