Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/myf-01-37.html 182, -0.014). ST was not related to N2 amplitude on either Oddball or NoGo target trials. Adjustment for moderate-to-vigorous physical activity (MVPA; all models), age (models with P3b NoGo target amplitude, N2 NoGo target amplitude and latency), and % fat mass (models with target NoGo accuracy and N2 NoGo target amplitude) did not modulate behavioral findings. MVPA did not significantly predict P3b amplitude. Our results suggest suboptimal response inhibition due to trading accuracy for speed and despite the upregulation of attentional resources among more sedentary adults with overweight and obesity. The exact dependence of biological effect on dose and linear energy transfer (LET) in human tissue when delivering proton therapy is unknown. In this study, we propose a framework for measuring this dependency using multi-modal image-based assays with deformable registrations within imaging sessions and across time. 3T MRI scans were prospectively collected from 6 pediatric brain cancer patients before they underwent proton therapy treatment, and every 3months for a year after treatment. Scans included T1-weighted with contrast enhancement (T1), T2-FLAIR (T2) and fractional anisotropy (FA) images. In addition, the planning CT, dose distributions and Monte Carlo-calculated LET distributions were collected. A multi-modal deformable image registration framework was used to create a dataset of dose, LET and imaging intensities at baseline and follow-up on a voxel-by-voxel basis. We modelled the biological effect of dose and LET from proton therapy using imaging changes over time as a surrogate for biological T using our proposed framework. Due to the low number of patients, the imaging changes observed for FA and T2 scans were not marked enough to draw any firm conclusions. The purpose of this study is twofold, first to present a new method based on head laser tracking designed to measure head or hand movements and secon
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत