Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/ The results are contrasted with experiments and simulations, and qualitative or better agreement is found. An overarching conclusion is that deformation strongly reduces the importance of longer range collective elastic effects relative to the local caging aspect for most, but not all, physical questions, with deformation-dependent fragility and dynamic heterogeneity phenomena being qualitatively sensitive to collective elasticity. Overall, nonlinear rheology is predicted to be a more local problem than quiescent structural relaxation, albeit with deformation-modified activated processes still important.Reported data of measured slip lengths in nanostructures span several orders of magnitude, from a few nanometers to tens of micrometers. Small roughness on surfaces caused by structural defects or thermal fluctuations dramatically reduces slippage. Tiny bubbles entrapped on rough surfaces can also affect slippage. We used an asymptotic solution and a high density-ratio pseudopotential lattice Boltzmann model to systematically study the drag resistance of a rough surface with attached bubbles. As bubbles nucleate and grow, drag resistance is slightly reduced until the tri-phase contact line reaches the edges of roughness, where bubbles with small angles substantially reduce drag resistance. As bubbles grow to become a continuous gas layer on the surface, the drag resistance greatly decreases. However, the interface deformation from flat to curved shape greatly hinders liquid flow, and the vortex structures cause a wave-like fluctuation in the effective slip length. This finding sheds light on the controversies of reported large variations in the slip length of super-hydrophobic surfaces in nanostructures, e.g., carbon nanotubes.CO2 single-photon double photoionization, Coulomb explosion, and dissociative ionization are studied with ultrafast extreme-ultraviolet pump and time-delayed near-infrared probe pulses. Kinetic energy release and mo
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत