Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/tg003.html For ionic current rectification (ICR) based sensing, nanopore functionalizations are mostly designed for directly binding target molecules to generate detectable signals from surface charge variation. However, this strategy is highly dependent on the charge difference between the captured molecules and surface functionalization layers, which will increase the nanopore design difficulty and subsequently limit the nanopore applicability. Another key challenge for ICR based sensing is the nanopore regenerability that is critical if online monitoring or repeated determination needs to be performed with one sensor. Though some types of nanopore regeneration have been realized on some specific targets or with harsh conditions, it is still highly favored to develop a regenerability using mild conditions for various targets. To address these two challenges, we developed a novel and universal sensing strategy for aptamer-functionalized nanopore that can be easily regenerated after each usage without any harsh conditions and independent of target molecule charge or size for ICR based nanopore sensing. Ochratoxin A (OTA) was used as a model analyte and its corresponding aptamer partially hybridized with the pre-immobilized complementary DNA (cDNA) onto the nanopore inner surface. We demonstrated that the recognition and conjugation of OTA with its aptamer resulted in rectified ionic current variations due to the dissociation between the OTA aptamer and its partially paired cDNA. The performance of this nanopore sensor including sensitivity, selectivity, regenerability, and applicability was characterized using rectified ionic current. This nanopore sensing strategy will provide a promising platform for extensive targets and online sensing applications. Electrokinetic principles such as streaming current and streaming potential are extensively used for surface characterization. Recently, they have also been used in biosensors, res
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत