Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/shp099-dihydrochloride.html Non-adiabatic molecular dynamics of neutral chrysene and tetracene molecules is investigated using Tully's fewest switches surface hopping algorithm coupled to the time-dependent density functional based tight-binding (TD-DFTB) method for electronic structure calculations. We first assess the performance of two DFTB parameter sets based on the computed TD-DFTB absorption spectra. The main focus is given to the analysis of the electronic relaxation from the brightest excited state following absorption of a UV photon. We determine the dynamical relaxation times and discuss the underlying mechanisms. Our results show that the electronic population of the brightest excited singlet state in armchair-edge chrysene decays an order-of-magnitude faster than the one in zigzag-edge tetracene. This is correlated with a qualitatively similar difference of energy gaps between the brightest state and the state lying just below in energy, which is also consistent with our previous study on polyacenes.There is strong interest in understanding the behavior of water in its supercooled state. While many of the qualitative trends of water dynamical properties in the supercooled regime are well understood, the connections between the structure and dynamics of room temperature and supercooled water have not been fully elucidated. Here, we show that the reorientational time scales and diffusion coefficients of supercooled water can be predicted from simulations of room temperature liquid water. Specifically, the derivatives of these dynamical time scales with respect to inverse temperature are directly calculated using the fluctuation theory applied to dynamics. These derivatives are used to predict the time scales and activation energies in the supercooled regime based on the temperature dependence in one of two forms that based on the stability limit conjecture or assuming an equilibrium associated with a liquid-liquid phas
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत