Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ml162.html Treatment of homo- and heterocyclic aromatic substrates with basic deuterium oxide under near- or supercritical conditions results in rapid base-catalyzed hydrogen-deuterium exchange (HDE) in aromatic and benzylic positions. It has been postulated that HDE follows a simple deprotonation-reprotonation mechanism, but little evidence has been provided to date. This study correlates experimentally observed proton exchanges in n-butylbenzene with ab initio calculations of the acidities and potential energy (PE) profiles. In addition to providing further support for carbanion intermediacy in HDE, these results offer new insights into substrate acidities in near- and supercritical aqueous media and the optimal conditions required for their isotope exchange.Procyanidin B3 is a natural flavonoid composed of two catechins connected via a C4α-C8' bond. The couplings of catechin derivatives, promoted by Lewis acids, have been widely applied to the syntheses of procyanidin B3 and related flavonoids because the reactions construct the C4α-C8' bond in a highly stereo- and regioselective manner. However, the structural complexity of the catechin derivatives has complicated the exploration of a detailed mechanism for this selectivity. Here, we report the results of a computational study to provide plausible origins for the selective C4α-C8' bond formation of catechin derivatives 1 and 2 by using models 5 and 7. Although a systematic search did not provide SN2-like transition states, we successfully identified transition states TS-A, TS-B, and TS-C for the SN1-type C4α-C8', C4β-C8', and C4α-C6' bond formations, respectively, from a total of 233 transition states to justify the stereo- and regioselectivity of the experimental results. The analysis of these structures by NCIPLOT mapping and the distortion/interaction strain model suggests that the eclipsed interaction at the forming C-C bond between the electrophile and the nucleophile de
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत