Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/p5091-p005091.html To assess and characterize the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in the development of uterine leiomyoma. Laboratory study. Academic research center. Not applicable. Laboratory investigation. Invitro assessment of human leiomyoma and myometrial tissue specimens as well as immortalized leiomyoma and myometrial cell lines. Western blotting and immunohistochemical analyses were performed to assess differences in CEACAM1 content between leiomyoma and myometrial samples. Small interfering RNA silencing experiments and transient transfection experiments were performed to characterize the regulatory role of CEACAM1 on downstream signaling cascades. Analysis of RNA sequencing data revealed decreased CEACAM1 expression in human uterine leiomyoma specimens compared with that in myometrial samples. This translated to a significant down-regulation in CEACAM1 protein content in human leiomyoma compared with patient-matched myometrial tissue samples (0.236 ± 0.05-folde of CEACAM1 expression in leiomyoma cells by transient transfection restored regulatory control and resulted in lower activation of the MAPK pathway (0.58 ± 0.37-fold). CEACAM1 is an important protein involved in regulating many signal transduction pathways. Decreased CEACAM1 expression in leiomyoma allows permissive uncontrolled overactivation and up-regulation of downstream pathways that may contribute to leiomyoma growth. CEACAM1 is an important protein involved in regulating many signal transduction pathways. Decreased CEACAM1 expression in leiomyoma allows permissive uncontrolled overactivation and up-regulation of downstream pathways that may contribute to leiomyoma growth. To identify, in myometrial stem/progenitor cells, the presumptive cell of origin for uterine fibroids, substrates of Mediator-associated cyclin dependent kinase 8/19 (CDK8/19), which is known to be disrupted by uterine fibroid driver mutations
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत