Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/cx-5461.html As many countries fear and even experience the emergence of a second wave of COVID-19, reminding health care workers (HCWs) and other hospital employees of the critical role they play in preventing SARS-CoV-2 transmission is more important than ever. Building and strengthening the intrinsic motivation of HCWs to apply infection prevention and control (IPC) guidelines to avoid contaminating their colleagues, patients, friends, and relatives is a goal that must be energetically pursued. A high rate of nosocomial infections during the first COVID-19 wave was detected by IPC specialists and further cemented their belief in the need for an engaging intervention that could improve compliance with COVID-19 safe behaviors. Our aim was to develop a serious game that would promote IPC practices with a specific focus on COVID-19 among HCWs and other hospital employees. The first 3 stages of the SERES framework were used to develop this serious game. A brainswarming session between developers and IPC specialists waement systems.This paper is concerned with the problem of finite-time H∞ state estimation for genetic regulatory networks with randomly occurring uncertainties. The persistent dwell-time switching, as a more versatile class of switching signal, is considered in this paper. Besides, several random variables that obey the Bernoulli distribution are used to represent randomly occurring uncertainties. The overriding purpose of this paper is to design an estimator to ensure that the estimation error system is stochastically finite-time bounded and satisfies the H∞ performance. The sufficient conditions for the explicit form of the estimator gains can be obtained by the Lyapunov method. Finally, a numerical example is given to verify the correctness and feasibility of the proposed method.The firing rate of some biological neurons such as neocortical pyramidal neurons is consistent with fractional order derivative, and the fr
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत