Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/Y-27632.html Three-dimensional cell culture provides an efficient way to simulate the in vivo tumorigenic microenvironment where tumor-stroma interaction intrinsically plays a pivotal role. Conventional three-dimensional (3D) culture is inadequate to address precise coexistential heterogeneous pairing and quantitative measurement in a parallel algorithm format. Herein, we implemented a set of microwell array microfluidic devices to study the cell spheroids-based tumor-stromal metastatic process in vitro. This approach enables accurate one-to-one pairing between tumor and fibroblast spheroid for dissecting 3D tumor invasion in the manner of high-content imaging. On one single device, 240 addressable tumor-stroma pairings can be formed with convenient pipetting and centrifugation within a small area of 1 cm2. Consequential confocal imaging analysis disclosed that the tumor spheroid could envelop the fibroblast spheroid. Specific chemicals can effectively hamper or promote this 3D metastasis. Due to the addressable time-resolved measurements of the merging process of hundreds of doublets, our approach allows us to decipher the metastatic phenotype between different tumor spheroids. Compared with traditional protocols, massive heterogeneous cellular spheroids pairing and merging using this method is well-defined with microfluidic control, which leads to a favorable high-content tumor-stroma doublet metastasis analysis. This simple technique will be a useful tool for investigating heterotypic spheroid-spheroid interactions.Van der Waals (vdW) heterostructures are the fundamental blocks for two-dimensional (2D) electronic and optoelectronic devices. In this work, a high-quality 2D metal-semiconductor NiTe2/MoS2 heterostructure is prepared by a two-step chemical vapor deposition (CVD) growth. The back-gated field-effect transistors (FETs) and photodetectors based on the heterostructure show enhanced electronic and optoelectronic perform
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत