Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ml210.html Herein, we developed a simple approach for quantitative metering of nanoliter-scale liquids in parallel based on a capillary array and applied it in high throughput screening protein crystallization conditions. The quantitative metering of liquids was achieved by using capillary force to spontaneously introduce the liquids into short capillaries with fixed length and inner diameter, and the nanoliter-scale droplets were generated by using a pneumatic pump to deliver liquids out from the capillary channels. We adopted measures of sharpening the capillary tips and performing a hydrophobic treatment on the tip surface to significantly reduce the capillary residues during the liquid aspirating and dispensing process, and thus improved the precision to 0.2%-3.5% relative standard deviations (RSD, n = 3) in metering droplets in the range of 280 pL-90 nL. We evaluated the performance of the system in metering liquids of different surface tensions and viscosity. On the basis of this approach, we built a capillary array system with 12 capillaries, by which parallel generation of 12 nL droplets of 12 samples could be achieved in 40 s with a relative standard deviation (RSD) of 1.2%. We applied the system in the screening of lysozyme crystallization conditions of 48 precipitants with 7.5 nL precipitant and 7.5 nL protein solutions in each crystallization droplet reactor, to demonstrate its potentials in large-scale high-throughput screening and analysis with different samples.The composite materials consist of Covalent Organic Frameworks (COFs) and silica have been regarded as a kind of promising stationary phases due to combination of the large specific surface area and good mechanical strength of porous silica microspheres and the porous structure and the excellent stability of COFs. Herein, a novel COFs-silica composite (SiO2@rLZU1, reduced Lan Zhou University-1) was prepared via an in-situ growth strategy with a 32 nm-thick C
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत