Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/msab.html Efficiently assessing the invasive capability of tumor cells is critical both for the research and treatment of cancer. Here, we report a novel method called the electrochemical trans-channel assay for efficient evaluation of tumor cell invasiveness. A bioinspired extracellular matrix degradation model (EDM) has been first fabricated on a porous anodic alumina (PAA) membrane to construct the electrochemical apparatus. Upon contacting the invasive tumor cells, invasive capability can be sensitively evaluated by the degree of EDM impairment, which is recorded by the electrochemical trans-channel ionic currents in a label-free manner. Compared to the most commonly used trans-well migration method, this assay can be accomplished in an efficient way that is significantly faster (20 min) and more convenient. Besides, quantitation can also be realized for monitoring the invasion process, which cannot be achieved by other currently used methods. Our proposed electrochemical trans-channel assay method has shown a synergistic effect for the evaluation of tumor cell invasiveness, providing a promising method for clinical assessment or prognostic applications of tumor metastasis.Natural killer (NK) cell-based immunotherapy presents a promising antitumor strategy and holds potential for combination with chemotherapy. However, the suppressed NK cell activity and poor tumor retention of therapeutics hinder the efficacy. To activate NK cell-based immuno-chemotherapy and enhance the tumor retention, we proposed a pH-responsive self-aggregated nanoparticle for the codelivery of chemotherapeutic doxorubicin (DOX) and the transforming growth factor-β (TGF-β)/Smad3 signaling pathway inhibitor SIS3. Polycaprolactone-poly(ethylene glycol) (PCL-PEG2000) micelles modified with dibenzylcyclooctyne (DBCO) or azido (N3) and coated with acid-cleavable PEG5000 were established. This nanoplatform, namely, M-DN@DOX/SIS3, could remain well dispersed in
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत