Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/sanguinarine-chloride.html A series of fluorescent dibenzodiazepinone-type muscarinic acetylcholine M2 receptor (M2R) ligands was synthesized using various fluorescent dyes (5-TAMRA, λex/λem ≈ 547/576 nm; BODIPY 630/650, λex/λem ≈ 625/640 nm; pyridinium dye Py-1, λex/λem ≈ 611/665 nm and pyridinium dye Py-5, λex/λem ≈ 465/732 nm). All fluorescent probes exhibited high M2R affinity (pKi (radioligand competition binding) 8.75-9.62, pKd (flow cytometry) 8.36-9.19), a very low preference for the M2R over the M1 and M4 receptors and moderate to pronounced M2R selectivity compared to the M3 and M5 receptors. The presented fluorescent ligands are considered useful molecular tools for future studies using methods such as fluorescence anisotropy and BRET based MR binding assays.Guavanoic acid functionalized gold nanoparticles exhibit anti-diabetic potential by improving insulin dependent glucose uptake in L6 rat skeletal muscle cells. The mode of action of the gold nanoparticles was established from the glucose uptake assay in the presence and absence of genistein and wortmannin. The anti-diabetic efficacy of guavanoic acid functionalized gold nanoparticles was put forth by in vitro assays like for PTP 1B, α-amylase and α-glucosidase enzyme activities. Studies on cytotoxicity revealed 50% inhibition of cells at 265 ± 0.01 μg mL-1. In the LDH enzyme release assay on differentiated L6 myoblasts treated with different concentrations (1-100 μg mL-1) of guavanoic acid functionalized gold nanoparticles, a viability of 75% at 100 μg mL-1 was observed.RNA molecules are becoming an important target class in drug discovery. However, the principles for designing RNA-binding small molecules are yet to be fully uncovered. In this study, we examined the Protein Data Bank (PDB) to highlight privileged interactions underlying small molecule-RNA recognition. By comparing this analysis with previously determined small molecule-protein interactions, we find
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत